Convergence analysis of spectral Tau method for fractional Riccati differential equations

نویسندگان

چکیده مقاله:

‎In this paper‎, ‎a spectral Tau method for solving fractional Riccati‎ ‎differential equations is considered‎. ‎This technique describes‎ ‎converting of a given fractional Riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎We use fractional derivatives in the Caputo form‎. ‎Convergence analysis of the proposed method is given and rate of‎ ‎convergence is established in the weighted $L^2-$norm‎. ‎Numerical‎ ‎results are presented to confirm the high accuracy of the‎ ‎method‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

convergence analysis of spectral tau method for fractional riccati differential equations

‎in this paper‎, ‎a spectral tau method for solving fractional riccati‎ ‎differential equations is considered‎. ‎this technique describes‎ ‎converting of a given fractional riccati differential equation to a‎ ‎system of nonlinear algebraic equations by using some simple‎ ‎matrices‎. ‎we use fractional derivatives in the caputo form‎. ‎convergence analysis of the proposed method is given an...

متن کامل

Convergence Analysis of Spectral Tau Method for Fractional Riccati Differential Equations

In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given and rate of convergence ...

متن کامل

Fractional Riccati Equation Rational Expansion Method For Fractional Differential Equations

In this paper, a new fractional Riccati equation rational expansion method is proposed to establish new exact solutions for fractional differential equations. For illustrating the validity of this method, we apply it to the nonlinear fractional Sharma-TassoOlever (STO) equation, the nonlinear time fractional biological population model and the nonlinear fractional foam drainage equation. Compar...

متن کامل

The Riccati Sub-ODE Method For Fractional Differential-difference Equations

In this paper, we are concerned with seeking exact solutions for fractional differential-difference equations by an extended Riccati sub-ODE method. The fractional derivative is defined in the sense of the modified Riemann-liouville derivative. By a combination of this method and a fractional complex transformation, the iterative relations from indices n to n ± 1 are established. As for applica...

متن کامل

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

The Müntz-Legendre Tau Method for Fractional Differential Equations

The principle result of this paper is the following operational Tau method based upon Müntz-Legendre polynomials. This methodology provides a computational technique for numerical solution of fractional differential equations by using a sequence of matrix operations. The main property of Müntz polynomials is that fractional derivatives of these polynomials can be expressed in terms of the same ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 40  شماره 5

صفحات  1275- 1290

تاریخ انتشار 2014-10-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023